The power of FDG-PET to detect treatment effects is increased by glucose correction using a Michaelis constant

نویسندگان

  • Simon-Peter Williams
  • Judith E Flores-Mercado
  • Andreas R Baudy
  • Ruediger E Port
  • Thomas Bengtsson
چکیده

BACKGROUND We recently showed improved between-subject variability in our [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) experiments using a Michaelis-Menten transport model to calculate the metabolic tumor glucose uptake rate extrapolated to the hypothetical condition of glucose saturation: MRglucmax=Ki*(KM+[glc]), where Ki is the image-derived FDG uptake rate constant, KM is the half-saturation Michaelis constant, and [glc] is the blood glucose concentration. Compared to measurements of Ki alone, or calculations of the scan-time metabolic glucose uptake rate (MRgluc = Ki * [glc]) or the glucose-normalized uptake rate (MRgluc = Ki*[glc]/(100 mg/dL), we suggested that MRglucmax could offer increased statistical power in treatment studies; here, we confirm this in theory and practice. METHODS We compared Ki, MRgluc (both with and without glucose normalization), and MRglucmax as FDG-PET measures of treatment-induced changes in tumor glucose uptake independent of any systemic changes in blood glucose caused either by natural variation or by side effects of drug action. Data from three xenograft models with independent evidence of altered tumor cell glucose uptake were studied and generalized with statistical simulations and mathematical derivations. To obtain representative simulation parameters, we studied the distributions of Ki from FDG-PET scans and blood [glucose] values in 66 cohorts of mice (665 individual mice). Treatment effects were simulated by varying MRglucmax and back-calculating the mean Ki under the Michaelis-Menten model with KM = 130 mg/dL. This was repeated to represent cases of low, average, and high variability in Ki (at a given glucose level) observed among the 66 PET cohorts. RESULTS There was excellent agreement between derivations, simulations, and experiments. Even modestly different (20%) blood glucose levels caused Ki and especially MRgluc to become unreliable through false positive results while MRglucmax remained unbiased. The greatest benefit occurred when Ki measurements (at a given glucose level) had low variability. Even when the power benefit was negligible, the use of MRglucmax carried no statistical penalty. Congruent with theory and simulations, MRglucmax showed in our experiments an average 21% statistical power improvement with respect to MRgluc and 10% with respect to Ki (approximately 20% savings in sample size). The results were robust in the face of imprecise blood glucose measurements and KM values. CONCLUSIONS When evaluating the direct effects of treatment on tumor tissue with FDG-PET, employing a Michaelis-Menten glucose correction factor gives the most statistically powerful results. The well-known alternative 'correction', multiplying Ki by blood glucose (or normalized blood glucose), appears to be counter-productive in this setting and should be avoided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitation of glucose uptake in tumors by dynamic FDG-PET has less glucose bias and lower variability when adjusted for partial saturation of glucose transport

BACKGROUND A retrospective analysis of estimates of tumor glucose uptake from 1,192 dynamic 2-deoxy-2-(18F)fluoro-D-glucose-positron-emission tomography [FDG-PET] scans showed strong correlations between blood glucose and both the uptake rate constant [Ki] and the metabolic rate of glucose [MRGluc], hindering the interpretation of PET scans acquired under conditions of altered blood glucose. We...

متن کامل

18F-FDG PET/CT in Neurolymphomatosis: Report of 3 Cases

Neurolymphomatosis is a rare manifestation of non-Hodgkin lymphoma characterized by infiltration of peripheral nerves, nerve roots, plexus and cranial nerves by malignant lymphocytes. This report presents positron emission tomography/computed tomography (PET/CT)imaging with 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) in 3 cases of non-Hodgkin lymphoma with nerve infiltration, including one newly d...

متن کامل

18F-FDG PET/CT usefulness vs Tc99m-Tetrofosmin in the assessment of malignant brain gliomas: Report of two cases

Gliomas account for almost 80% of primary malignant brain tumors in adults. Magnetic Resonance imaging (MRI) is still the gold standard for diagnosis of brain tumors and brain 99mTc-tetrofosmin Single Photon Emission Computed Tomography (99mTc-tetrofosmin-SPECT) has been established as a useful tool for their evaluation. Fluorine-18–2-fluoro-2-deoxy-d-glucose positron emi...

متن کامل

Implementation of quadratic dose protocol for 18F-FDG whole-body PET imaging using a BGO-based PET/CT scanner, GE Discovery ST

Introduction: The ability of quadratic dose protocol to maintain a good quality image for an overweight and obese patient is well reported. However, a practical approach to the implementation of this protocol in whole-body imaging in Malaysia is currently lacking. Hence, the aim of this study is to derive the quadratic dose formula that suits our PET system. Metho...

متن کامل

Localization of acute pyelonephritis in pyrexia of unknown origin using FDG PET/CT

Objective(s): Acute pyelonephritis presents with high-grade fever, dysuria, flank pain, leukocytosis, and microscopic hematuria. Urine culture aids in the diagnosis of this infection. It can be complicated or uncomplicated. Complicated pyelonephritis includes uncontrolled diabetes, transplant, pregnancy, acute or chronic renal failure, structural abnormality of the uri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012